Wave-Function Mapping of Graphene Quantum Dots with Soft Confinement
نویسندگان
چکیده
منابع مشابه
Magnetic field induced confinement-deconfinement transition in graphene quantum dots.
Massless Dirac particles cannot be confined by an electrostatic potential. This is a problem for making graphene quantum dots but confinement can be achieved with a magnetic field and here general conditions for confined and deconfined states are derived. There is a class of potentials for which the character of the state can be controlled at will. Then a confinement-deconfinement transition oc...
متن کاملStructural and Optical Characterization of ZnO-Graphene Nanocomposite Quantum Dots
In this research, zinc oxide quantum dots and graphene nanocomposites were synthesized via two different methods; In the first (direct) method, ZnO-graphene Nanocomposites were made mixing the synthesized zinc oxide and graphene. In the second (indirect) method, zinc nitrate, graphene, and sodium hydroxide were used to made ZnO-graphene Nanocomposites. XRD, FTIR and Raman spectroscopy analyses ...
متن کاملGraphene based quantum dots.
Laterally localized electronic states are identified on a single layer of graphene on ruthenium by low temperature scanning tunneling spectroscopy (STS). The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances (QWRs) with energies that relat...
متن کاملQuantum Dots in Graphene
The paper reports on theoretical study of electron states for a quantum dot in a graphene monolayer. Discrete energy spectrum of quasiparticles inside the quantum dot is found. Energy levels and corresponding quasiparticle resonant wave functions are obtained, which allow calculating the local density of states inside the quantum dot. Some experimental results recently released are referred.
متن کاملCorrelation effects in wave function mapping of molecular beam epitaxy grown quantum dots.
We investigate correlation effects in the regime of a few electrons in uncapped InAs quantum dots by tunneling spectroscopy and wave function (WF) mapping at high tunneling currents where electron-electron interactions become relevant. Four clearly resolved states are found, whose approximate symmetries are roughly s and p, in order of increasing energy. Because the major axes of the p-like sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2012
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.108.046801